If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+12x-1436=0
a = 1; b = 12; c = -1436;
Δ = b2-4ac
Δ = 122-4·1·(-1436)
Δ = 5888
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5888}=\sqrt{256*23}=\sqrt{256}*\sqrt{23}=16\sqrt{23}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-16\sqrt{23}}{2*1}=\frac{-12-16\sqrt{23}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+16\sqrt{23}}{2*1}=\frac{-12+16\sqrt{23}}{2} $
| 1/5(x-11)-2x(1/3-1/5)=3/4x-2-X-1/60x | | 1÷3(2x-1)-1÷4(2x+1)=1÷12(2-x) | | M/4+m/5=2 | | 13x+12=6x+117 | | 57-3x=6x+22 | | 7w+10-10=38-10 | | 10(w+4)=90 | | 3+-2x=13+3x | | 9x-7=2.7 | | 10=3x/9 | | (8-2+1)x=-3 | | t+1=8t+8 | | 5x+4x-2x=42 | | 21-6t=41-t | | 2^(2x)-6*2^(x+1)+32=0 | | 2(x+8)/3=2 | | -7-4x=14 | | 10=-10+10x | | 38–10l=10+4l | | 12–8n=8–10n | | 5x+8=6x–1 | | 7x/2-9=12 | | 8t–24=2t–6 | | 6t–3=7t–8 | | 8=(10x−4)÷2 | | 5x-x-4x=4 | | 5x-x-4x=0 | | -13=2-5x | | 16=-8+3x | | -13=8-7x | | 3m^2+2m-7=0 | | 17=w/2-8 |